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THE EVOLUTION OF TWO TORN ADIC SUPERCELLS INTO AN INTENSE BOW ECHO OVER SOUTHWEST
NEBRASKA AND NORTHWEST KANSAS

Eric Martello1
National Weather Service Office 

Goodland, Kansas

L INTRODUCTION

On August 21, 1997, two tomadic supercells formed in southwest Nebraska, merged, then moved rapidly into 
northwest Kansas as a bow echo system (Figure 1). Prior to the merger, the two storms produced 4.5 cm (1.75 in) 
diameter hail just before crossing the Kansas/Nebraska state line. After the storms evolved into the bow echo, wind 
damage became more pronounced and widespread as the system moved rapidly southeast across portions of 
northwest Kansas. Although there were some differences during the mesocyclonic stage, the event was similar to one 
that occurred near Lahoma, Oklahoma in 1994 (Conway 1994). This study will examine the environmental conditions, 
radar signatures, and structural damage associated with the event.

Figure 1. Track of two supercells and resultants bow echo of August 21,1997.

II. THERMODYNAMIC PARAMETERS

Area soundings at 1200 UTC 21 August, showed that a surface-based inversion existed over western Kansas with 
surface temperatures ranging between 16-19°C and 850 mb temperatures in the 26-28°C range. At this time, Convective 
Available Potential Energy (CAPE) values of 1000-1500 J kg'1 existed overthe region. A northwest-southeast oriented 
500 mb baroclinic zone existed over central Nebraska and Kansas between a low over the upper Midwest and a ridge 
situated over the central Rocky Mountains, resu Iting in a northwest flow regime over western Kansas. 1200 UTC Lifted 
Indices (LI) at 1000-500mb ranged between -2°C and -4°C overthe region (Figure 2). By 0000 UTC 22 August, ample 
surface heating had broken the surface-based inversion with LI values approaching -10°C (Figure 3). Mid-level (700- 
500mb) lapse rates over Goodland, Kansas, were 7.7°C km'1 based on a modified sounding taken from Dodge City, 
Kansas, at 0000 UTC 22 August.

'Current affiliation, NWS Jackson, Mississippi
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Figure 2. Surface-based lifted indices (°C) 1200 UTC 21 August 1997.

Figure 3. Surface-based lifted indices (°C) 0000 UTC 22 August 1997.
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The modified sounding for Goodland, based on a sounding from Dodge City, Kansas, using Eta temperatures and dew 
points up to 500 mb (Figure 4) at the same time, indicated advection of dry air from the southwest at 750 mb. It also 
showed that a dry, westerly flow off the Rockies existed at 700-600mb with the potential for strong evaporative cooling 
in this layer increasing the potential for large hail and downbursts. A shallow, moist layer existed between 850-800 mb. 
A south wind at these levels backed to the southeast at the surface. CAPE values increased to between 4000 and 5000 
J kg1 by late afternoon with 32°C and 20°C surface temperatures and dew points, respectively, at 0000 UTC 22 August. 
In this case, the system developed in existing high CAPES, whereas, the 1994 Lahoma system adverted into a steep 
CAPE gradient which increased storm-relative (SR) inflow into the system and resulted in a change in storm structure 
as the system moved south-southeast (Conway 1994).

4

Figure 4. Modified sounding for Goodland 0000 UTC 22 August 1997, showing Convective Available Potential 
Energy- (CAPE) area.

Johns (1993) states that high CAPES are an important ingredient for long-lived warm season bow echoes in the absence 
of strong dynamic forcing aloft. Once the 1.6°C cap shown in the modified sounding was broken, thunderstorms 
developed rapidly. A storm-type derivation chart (Brooks and Doswell 1994), shown as Figure 5, was used in 
conjunction with the modified sounding for Goodland to estimate the probable storm-type of the activity. The chart 
uses mixing ratios and helicity values to determine types of severe weather associated with thunderstorms. The 
location of Goodland’s parameters for the afternoon on the chart indicated that straight-line-wind-type storms were a 
strong possibility. The potential for tornadoes was significant as well, and tornadoes did occur during the 
mesocyclone stages of the two supercells.

However, no horizontal vorticity-induced tornadoes were reported during the bow echo stage. Although 
mesocyclones may develop along the “bookends” of a bow-echo (Johns 1993), only damaging straight-line winds 
occurred with this event.

IIL IVIES OS CALF. AND SYNOPTIC CONTRIBUTORS

The mean sea level (MSL) pressure pattern at 0000 UTC indicated a lee trough from the Nebraska panhandle to the 
eastern plains of Colorado. Dew points across the lee trough ranged from 12-15°C in eastern Colorado to 19-22°C in 
eastern portions of northwest Kansas and southwest Nebraska (Figure 6). An east-west quasi-stationary front existed 
from west-central Nebraska southeast to near Concordia, Kansas. Johns (1993) found that weak wind-extreme 
instability events tend to occur along and to the south of stationary fronts, similar to the situation in place over

3



northwest Kansas. A surface to 850 mb Theta-E (0e) ridge (Figure 7) existed from Texas into western Nebraska with a 
developing 25 to 35 kt southerly low-level jet (LLJ) situated east of the surface trough. At 2330 UTC, two isolated 
supercells formed in southwest Nebraska east of this trough, which is a typical location for convective initiation 
(Kriehn 1992). Winds of 25 to 35 kts were noted in the 600mb-700mb layer at this time (Figure 11). Winds of this 
magnitude are strong enough to produce tomadogenesis within a storm-relative (SR) helicity field of 150-175 m2s2 
(Brooks and Doswell 1994). In the Lahoma ,Oklahoma event, SR mid-level winds of 15 to 20 kts (Conway 1994) were not 
enough to generate and stretch the low-level horizontal vorticity in the mesocyclonic stage of the supercell, as 
happened in the northwest Kansas case. However, both events transformed into bow echoes after moving into higher 
low-level moisture regimes. Johns (1993) states that in extreme instability conditions, weak mid-level winds are common 
in warm season bow echo events. In addition, he suggests that optimum condition for bow echo maintenance consists 
of strong vertical wind shear in the lowest 2.5 km AGL with unidirectional winds in the mid-levels. Wind profiles the 
evening of August 21 correlated well with Johns’ observations.
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Figure 6. Surface observations, analyzed surface pressures, fronts, and dew point temperatures for 0000 UTC 22 
August 1997.

Figure 7. Surface-850 mb layer Theta-E (0e) analysis for 0000 UTC 22 August 1997.
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Figure 11. Goodland WSR-88D velocity azimuth display (VAD) wind profile product for 0005 UTC 22, August 1997, 
showing wind direction and velocities through the vertical in kft MSL.

Once boundary layer winds decoupled from the surface, the LLJ shifted slightly east by mid-evening. Such a shift is 
primarily due to thermal wind relationships related to differential cooling associated with the east-west sloping terrain 
(Bluestein 1984). Similar to a case documented by Kriehn (1992), these storms moved into a region of lower levels of free 
convection (LFC) where deeper low level moisture existed. This is similar to the Lahoma case where both events 
occurred in environmental surface mixing ratios around 17 g kg'1. Less lift is needed to initiate convection where lower 
LFCs exist. By 0300 UTC 22 August, this system behaved similarly to Kriehn’s observations as outflow produced by 
the full-fledged bow echo system initiated new convection along its front flank.

The bow echo propagated south-southeast into the nose of the Theta-E (0e) ridge over west-central Kansas (Figure 7), 
then into northwest Oklahoma by 0900 UTC 22 August. Strong SR inflow from a 30 to 40 kt LLJ over western Oklahoma 
sustained the bow echo through the night. By 1200 UTC 22 August, the storms dissipated as SR inflow decreased and 
the nocturnal LLJ weakened.

IV. RADAR SIGNATURES: MESOCYCLONESTAGE

After the two rotating supercells formed over southwest Nebraska, the larger northern cell turned right of the mean 
flow. By 0049 UTC 22 August, it began to merge with the slower and smaller supercell to the south over Chase County, 
Nebraska (Figure 8). Storm Top Divergence was estimated by the Goodland WSR-88D radar to be 184 knots as the two 
supercells merged between Imperial and McCook, Nebraska. Divergent flow aloft of this magnitude is strong enough
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to produce hail up to baseball size (WSR-88D Operational Support Facility 1993). Spotter reports from Dundy County 
in southwest Nebraska indicated hail 4.5 cm in diameter fell near locations of the maximum reflectivity on Goodland 
WSR-88D’s mid-level (24-33Kft) LRM product (Figure 9). Both supercells produced tornadoes around this time (0045 
UTC) and the Goodland WSR-88D radar showed the associated cyclonic rotation signatures on the 0.5° base velocity 
product (Figure 10).

As the storms merged, they moved into a more unstable thermodynamic environment. Evaporative cooling in response 
to dry mid levels helped to generate strong baroclinic vorticity within the storm complex. Once this occurred, the 
downdraft strength increased and formed the familiar spearhead shape indicative of an intensifying rear inflow jet (R1J) 
(Przybylinski and Gery 1993). Between 0130 UTC and 0230 UTC, the RIJ and associated precipitation helped to 
undercut the low-level updraft which occluded the storm and eliminated the mid-level mesocyclone, similar to the 
Lahoma case (Conway 1994).

Two major differences arise between this event and the 1994 Lahoma, Oklahoma event during the initial mesocyclonic 
stage. Only one supercell existed prior to transition in the Lahoma case where two merging supercells existed in the 
northwest Kansas case. Furthermore, the Lahoma storm did not produce a tornado in its early mesocyclone stage 
whereas in this case both supercells produced tornadoes. Stronger mid-level winds in the northwest Kansas case most 
likely attributed to the tornadogenesis that occurred.

V. RADAR SIGNATURES: BOW ECHO STAGE

By 0330 UTC, the LLJ in the boundary to 850 mb layer had developed. The Red Willow, Nebraska profiler showed this 
feature strengthened to 40 knots. This LLJ helped to feed in high Theta-E (0e) air into the broadening thunderstorm 
complex. The convection then moved into an environment consisting of a lower LFC, higher CAPE, and a more linear 
wind profile in northeast portions of Goodland’s CWA, similar to the later stages of Conway’s (1994) observation of 
the Lahoma, Oklahoma event.

A well-defined weak-echo region can also be seen along with an outflow boundary from the southwest flank of the 
storm extending west to Goodland. Furthermore, a strong reflectivity gradient existed along the front edge of the 
thunderstorm complex (Przybylinski and Gery’s 1993). In addition, the maximum echo top was over or ahead of the 
strong front flank low-level gradient (Figure 12). Fujita (1978) described this characteristic of a mature bow echo.

The storms continued to move southeast, reaching Hays, Kansas (HYS) around 0430 UTC. Base velocity estimates at 
that time (Figure 13) indicated the potential for 80 knot winds mixing to the surface. A strong rear inflow notch (RIN) can 
be seen in the corresponding reflectivity (Figure 14) as mid-level evaporative cooling intensified the downdraft and 
produced an outflow surge along the front edge of the thunderstorm. However, these storms were moving nearly 
perpendicular ( 70-80°) to the radial of Goodland’s WSR-88D electromagnetic beam. Since the WSR-88D estimates 
velocity best when scatterers move parallel to the radial of the beam, this likely led to an underestimation of mid-level 
winds. In addition, velocity estimates were probably degraded due a decrease of the beam’s power density through 
volume averaging spatially as one moves away from the RDA. Przybylinski and Gery (1993) suggest that such 
limitations on the WSR-88D can be supplemented by a good spotter network to verify severity of ongoing weather.

VI. DISCUSSION OFSURFACE REPORTS AND DAMAGE

During the period of transition (0130-0230 UTC), the convective storm structure observed on the Goodland WSR-8 8D 
reflectivity loop began to resemble a pattern that implies damaging winds and downbursts, as described by Fujita 
(1978). At 0153 UTC, the Automated Surface Observation System (ASOS) in McCook, Nebraska took a special 
observation which recorded west winds sustained at 26 kts gusting to 33 kts. Convective activity at this time was 
approximately 80 km to the west of the McCook ASOS. Southeast Dundy County experienced wind gusts in excess of 
58 kts and hail 4.5 cm in diameter ten minutes prior to the McCook observation (Figure 15). At that time, the merging 
supercells still had their mesocyclonic characteristics with tornadoes and large hail being the main concern of the 
operational staff.

The storms began to surge into northwest Kansas by 0200 UTC. A bow echo took shape at that time as the RFD was 
intensifying. The extent of damaging winds was approximately 85 km wide, extending from Rawlins County, Kansas to 
Norton County, Kansas. Wind gusts greater than 58 kts were reported by several spotters in this area (Figure 15). 
Downed power poles, uprooted trees, blown out windows, and siding ripped off the sides of homes were reported near 
Dresden, Kansas. Johns (1993) states that bow echo induced downbursts account for the majority of casualties and 
damage from convectively-induced non-tornadic winds.
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Figure 13. Goodland WSR-88D 0.5° base velocity product for 0439 UTC 22 August 1997. during bow echo stage
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Figure 14. GoodlandWSR-88D0.5°basereflectivity productfor0439UTC22 August 1997. during bow echo stage.

The RIN and associated weak-echo region (WER) continued to show further intensification as the system moved into 
Graham and Sheridan Counties of northwest Kansas after 0300 UTC. The system reached the Hill City ASOS site (HLC) 
at 0331 UTC with sustained winds up to 59 kts and gusts to 68 kts.

The intense rain kept visibilities below one statute mile (1.6 km) from 0325 UTC until around 0355 UTC. Sheridar. 
County to the west reported similar conditions resulting in large tree limbs being snapped off, campers being flipped 
and electricity being knocked out at Sheridan Lake near Hoxie, Kansas (Figure 15). The storms produced a 50-knot gust 
in Hays. Kansas at 0436 UTC.

The bow echo continued south-southeast into southwest Oklahoma. At 1400 UTC, the GOES 8 Infrared (12g) satellite 
imagery showed remnants of this system between Lawton, Oklahoma, and Wichita Falls, Texas. Storm damage from 
this system emphasized that warm season, mesoscale induced bow echoes can be as intense as dynamic-type bow 
echos, that occur more often in fall and spring.

VIL SUMMARY

Changing atmospheric environments and subsequent effects on thunderstorm structure were instrumental in the 
evolution of the August 21,1997, supercell merger into a bow echo system. Potential moisture availability, strength of 
LLJ feeding the convection, and SR mid-level winds, thermodynamic instability (CAPE, LI, etc.), and vertical/horizontal 
wind shear all played vital roles in how the convection formed and behaved. A thunderstorm’s internal dynamics can

t
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change the ambient environment in which it resides in (Fujita 1978), which is what occurred with the two supercells as 
they merged together north of the Kansas/Nebraska state line. Strong SR low level inflow combined with high CAPES 
induced precipitation loading at the top of the updraft once the LLJ developed after sunset and fed into the system. 
The consequential precipitation cascade evaporating in the dry mid levels created a strong RFD descending from the 
mid levels. The resulting RIJ surged out of the storm’s leading edge cutting off inflow into the mesocyclone and 
developing the wedge-shaped signature.

4

*

NEBRASKA. Extreme sonihwi-M
Dundy County

19 NNE Benkelraan 21 1S25MST

Dundy County 
15 N Benkclman

OJ 50 0 0 2K Tornado (FI)
Weak tornado moving south southeast blew out windows and tore down tree branches. One inch hail was observed 2 miles east of 
tornado.

21 1845MST 0 0 10K Hail (4.00)
Hail up to grapefruit size damaged vehicles, roofs, and siding and destroyed windows and windshields.
The bail was accompanied by strong winds At 1840 MST. 1.25 inch diameter hail was reported 16 miles north of Zkr.kcJmar. and 
winds broke 4 branches up to 3 inches in diameter At 1841 MST winds estimated at 60 mph were repotted 11 miles NNE 
Bcnkelman.
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Character of Siorm
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2| 190OMST 0 0 Thunderstorm Wind (G6I)
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Hitchcock County
4 WSW Stratton to
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Rawlins County 

6 W Atwood

Decatur County 
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21 Tslm Wind/tlail1950CST 0 0
2000CST

Fifty' foot cottonwood tree blown over and broke hole in roof. Hail up to dime size reported. Dozen tree limbs up lo 6 inches in 
diameter broken

21 2Q00CST
Hail accompanied by 50 to 60 mph wind.

21 2015CST
Spotter estimated 60 mph winds.

21 2030CST
Spotter estimated 60 mph wind*

2I00CST

Hail (0.75)

Thunderstorm Wind (G52)

Thunderstorm Wiud (G52)

Thunderstorm Wind (G87)iU1„vv,k,. 0 0 250K
V, blew out windows, uprooted trees, knocked down signs and antenna;.. At least 4 roofs were blown off; a Stonge building and 
a mobile home was destroyed A leg on a grain elevator was hem. At Lcovillc. spotter estimated 60 tr.pb winds

21 2130CST 0 50K Thuatlerstorm Wind (G68)
Wind gust recorded by ASOS. Damage m Hill City included windows blown out. power polo down, old bam destroyed, signs and 

tree branches down, and 1 roof off

21 2130CST 0 0
Estimated 80 mph wind downed seven power poles west of Morland.

1GK

10k

Thunderstorm Wind (G61)

Thunderstorm Wind (G65)21 2130CST 0 0
Win- estimate*! 70 to SO mpii damaged camper and brougm down large tree limbs * Sheridan Lake- At Studlcy. estimated 70 mph

winds brought down lice limbs.

Graham County 
16 S .Nkodemus 21 2I46CST 0

Tree branches up to 3 inches in diameter downed

Thunderstorm W md (G52)

Figure 15. Storm Data complied in local standard time (LST) for areas in Goodland’s County Warning Area (C WA).
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The Goodland WSR-88D provided vital clues to the convective metamorphosis. The Echo Top radar product showed 
a migration to the front edge of the convection. Reflectivity products in the lowest two elevation scans gave early 
signs of a “wedge” developing as the storms moved into the nose of a 30 to 40 knot LLJ. The “classic hook” of the 
merging storms soon disappeared as the low level flow into the mesocyclones was cut off. Once into a higher CAPE 
and moisture environment, the “wedge” in reflectivity sharpened and showed a weak-echo region (WER) where the 
strong RFD transferred momentum down to the surface.
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The Goodland WSR-88D’s ability to estimate velocities along the radial of the beam indicated the stronger winds 
associated with the RIJ. Due to larger volume averaging of the radar’s electromagnetic beam, velocity measurements of 
storm-outflow were likely underestimated. Furthermore, the eventual perpendicular orientation to the Doppler radar’s 
beam added to estimations misrepresenting actual wind. Even so, WSR-88D velocity products were instrumental in 
estimating downdraft potential.

The RIJ cutoff of SR low level inflow into the merging storms dissipated the mesocyclone, leading to a more 
multicellular structure. Consequently, after the RIN developed on the base reflectivity scan, straight-line wind damage 
began to occur. A mesoscale observation network (mesonet) combined with a well-trained spotter network were 
invaluable when confirming signatures on radar. This convective event demonstrated that warm season bow echoes 
can be just as intense as dynamic-type fall and spring systems. Storm damage from this warm season event documents 
how bow echoes, in general, can produce destructive winds and can pose a serious threat.
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